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Assessing the Error in a Finite Element
Solution

RONALD W. THATCHER

Abstract —In this paper a method of error assessment for the finite
element method is discussed. This idea is used to optimize grid refinement
schemes both for singularities and also for handling unbounded regions. It
is shown how those elements, or groups of elements, that make large
contributions to the error term can be identified so that local grid refine-
ments can be placed in the most advantageous regions.

1. INTRODUCTION

HE FINITE element method for solving field prob-

lems has become a widely used procedure (see, for
example [1], {2]). In this paper some ideas concerning error
assessment are presented with reference to a particular
problem in electrical field theory.

The problem is illustrated in Fig. 1 and is a parallel plate
capacitor in free space (permittivity &,) with a dielectric
medium of permittivity ¢, between the plates which are of
width 24 and separation 2b. The electric field » of this
problem satisfies the differential equation

v-evu=0, inQ

(1)

where

iy © is the region —oo<x <co, —oo<y<oo
ii) e(x, y)=¢, in the dielectric,
=g, elsewhere

subject to the boundary conditions

1) u= +V on plate 1
il u= —V on plate 2
iit) u—>0 as x or y - =+ c0.

The calculation of u and of the capacitance C

1
C4—5

are important for this problem.

| vu|*dQ (2

II. ERROR ASSESSMENT

The method of error assessment adopted here is related

to the use of dual or complementary variational principles

- and Synge’s hypercircle method, [3]-[5]. To illustrate the

method we consider the differential equation (1), for which

2 is a finite two-dimensional region with boundary 9%,
subject to the boundary conditions

1) u= fon 3%, . 3)
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Fig. 1. A parallel plate capacitor.
and
il) 0u/0n=0on 9%, €))

where 09, and 9%, are parts of the boundary of Q.
The solution of this differential equation gives the
minimum to the functional
Jn(qy/) :fel V¢//|2d9 (5)
Q .
over all functions belonging to D”() where D”() is the
set of functions that

i) are continuous in € and have square integrable first
derivatives in &,
ii)satisfy the boundary condition (3).

The dual or complementary approach to this problem is
to find the minimum v of the functional

J'(¢') =fS2%|v¢f|2dsz ﬂfan f%i;d(aﬂ) (6)

over all functions belonging to D’(2) where D’(Q) is the
set of functions that

i). are continuous in £ and have square integrable first
derivatives in €,
ii)are constant along 9%,, (different constants along
distinct portions of 9%, ).
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The solution u of the differential equation is related to v by
du_10  du__ 130 )
0x € 0y dy £ 0x

To obtain our error estimate from these two solutions we

use the space H({2) of two-dimensional vector-valued func-
tions in & with inner product

(P,Q)H:fﬂePQdQ

which is properly defined when

(8)

)
The gradient of u is denoted by S in H({), the gradient of
the typical ¢ of D”(£) is denoted by S” in H(Q), and §’
in H(§2) denotes

-

0<epn<e(x, ) <ep, <©.

1
aq)//ax ( O)
for the typical ¢’ of D’(§2), then for all S’ and S” we have

€

3¢’/ 8y]

i) (S—S,8-8),<(S—8",8-S"),=E (11)
ii) (S—S”,S—S"), <E (12)
i) (8”,8")y — E<(S,9)y<(8",8")y. (13)

Thus E is an upper bound of the error in H(2) between
both S and §’, and S and S”.

As defined, this estimate E of the error is seldom of great
value although if F is zero then both §’ and S” must
represent the solution S and if E is very small compared
with (S8',8");; and (S8”,8");, then both S’ and S” must be
good approximations. However, E is an integral over the
region @ and, when approximate minima of the functionals
(5) and (6) are calculated by the finite element method on
the same grid of elements, the element-by-element contri-
butions to E can be calculated and hence element-by-ele-
ment assessment of accuracy. In this way, those elements
making major contributions to the error can be identified
and singled out for grid refinement.

These ideas can be extended to problems in which € is
unbounded. If we take the boundary condition at infinity
to be

(14)

u-0as(x,y)-o0

then we have to add the extra condition to D"’ that

(15)

¢”"—0as(x,y)— o0

and an extra condition to D; namely

(16)

These ideas can be further extended to problems with
rotational symmetry and general three-dimensional prob-
lems. More generally, the dual principles are nonlinear and
the bounds (11) and (12) are not valid. Nevertheless, the
calculation of element-by-element contributions to E, as
defined by (11) could be used to find those elements in
which the representation is likely to be poor.

¢’ —(constant) as (x, y) - 0.
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Fig. 2. Grid | with refinement at the singularity and 2 “at infinity.” (a)
The blending section. (b) Refinement for the infinite region. (c) Refine-
ment for the singularity.
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Fig. 3  Grid 2 with 3 refinements at the singularity and 2 “at infinity.”
(a) The blending section. (b) Refinement for the infinite region. (c)
Refinement for the singularity.

III. FINITE ELEMENT GRIDS FOR THE PARALLEL
PLATE CAPACITOR

A brief description of a parallel plate capacitor is given
in Section I and by exploiting symmetry it can be reduced
to solving the problem in the positive quadrant with the
extra boundary conditions

i) u=0 on the X-axis (17)
ii) 9u/9n =0 on the Y-axis. (18)

The automatically generated grid of triaﬁgles used to solve
this problem are made up in three sections

i) a systematic refinement scheme near the singularity
1) a systematic refinement scheme to cope with the
infinite region
iii) a blending triangulation in between.

The various sections of the typical grids are illustrated in
Figs. 2 and 3, where the nodes {4,}%_, are a distance R,
from (0,0) and the nodes {B,}_, are a distance R, from
(0,0) with
R,=R, Xk, (19)

where

1) k, is some parameter greater than 1

ii) n,is the number of refinements for the infinite region

and these nodes form the basis for the systematic refine-
ment scheme for the infinite region. Similarly, the nodes
(S,) are a distance R, from the singularity at S and nodes
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TABLEI
OPTIMUM VALUE OF k|

n Best kg Best k

S for €1 * gg for €y = ?050
2 0.36 0.42

4 0.48 0.54

6 0.56 0.61

8 0.61 0.66

are placed concentrically at distances
R, Xk?, p=12,---,n, (20)
where

1) k, is some parameter between 0 and 1,
ii) nis the number of refinements at S,

and these nodes form the basis for the systematic refine-
ment scheme for the singularity.

It has been shown [6] that given the form of the singular-

ity at S, (which will depend on the dielectric medium
between the plates) and the value of n, the value of k, that
minimizes the error is independent of @ and b, of the
number of nodes on the arcs of radii R k? and of R,.
These values are given in Table 1.

IV. A SoLuTION OBTAINED BY IGNORING THE
UNBOUNDED REGION

Approximate solutions are obtained by minimizing the
functionals (5) and (6), respectively, in the sets D’(£2_) and
D"(Q,.) where & is the region x>0, y > 0; the integrals
in (5) and (6) are evaluated over Q_. In practice the
simplest way to tackle this problem is to assume that
the solution is zero outside some large radius, which is the
approach adopted below. At the end of this section we will
use the ideas discussed above to get an assessment of the
error this assumption produces. Here we will consider only
the case when a=b=1, V=1, and ¢ = ¢, i.e.,, no dielec-
tric medium between the plates. The solution will be as-
sumed to be zero outside the polygon B,B,B,B;B,, for
which R, is taken to be 3. (Note, this is not a good choice
if a useful solution is required by this approach.) We will
denote by £, the subregion of {,, inside this polygon.

Approximate solutions are obtained by minimizing the
functionals (5) and (6) with respect to generalized coordi-
nates of trial functions in the sets D”(,) and D'(Q,)
using linear triangular elements on the grids shown in Fig,
4. Fach grid has a title of the form

2.3(0.51)-4(1.26)
which represents grid 2 with n,=3, k,=0.51, n,=4,
k,=1.26, and for all the grids used here R, = 0.8, R, =2.5.
The shaded elements in Fig. 4 are those elements that are

making more than twice the average contribution to the
error E.
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Fig. 4. Typical grids for the restricted problem. (a) Grid 1.2(0.36).1(1.2).

(b) Grid 14(048).1(1.2). (c¢) Grid 1.8(0.61).1(1.2). {d) Grid
2.2(0.36).1(1.2).
TABLE II

No.of | Upper | Lower | Error for Exact lower True error
Grid | gen. bound | bound | restricted | bound for for full

words | on S2 |on S2 | problem full problem | problem
1.2.1 42 23.49 | 20.76 2.729 15.49 8.005
1.41 | 60 |23.16 |21.06 | 2.096 15.66 7.506
1.8.1 96 22.97 | 21.24 1.741 16.75 7.226
2.2.1 95 22.99 | 21.30 1.685 15.78 7.206
Spec. 68 22.96 | 21.39 1.573 15.83 7.127
Colunms i3] anc .«. are calculated using (13)

Colurn (v 1s calculated using (17).

For the grid 1.2.1, several large elements are making
significant contributions to the error but the ratio

(element error) /(area of element) =(element error density)
(21)

for these elements is not grossly out of line with the ratio
(total error) /(total area) = (total error density). (22)

However, for the three elements at the singularity the
difference in these two ratios is a factor of approximately
50 which indicates that further refinement at the singu-
larity would be benéficial. Thus grid 1.4.1 is used. By
looking at column (5), Table II, we can see that the total
error has been reduced by about 22 percent and the
numiber of nodes increased by 18.

To improve the solution on grid 1.4.1 without any
information about the error we might put in more refine-
ments at the singularity, i.e., use grid 1.8.1, or for a more
refined grid to reduce the size of the large elements, i.e., use
grid 2.2.1. On both of these grids, the number of nodes has
been increased by about 60 percent and the error reduced
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A special grid. Nore: a circle around a node indicates that it is an

Fig. 5.
extra node added to the grid 1.4.1, that is an extra eight nodes.

by about 15 percent But by lookmg at the elements grvmg
a major contribution to error, that is the shaded elements
in Fig. 4(b), we can choose a grid that increases the number
of nodes by only 13 percent but decrezises the error by 25
percent. The special grid used. is illustrated in Fig. 5 and
with this grid we get a smaller error than grids 2.2.1 and
1.8.1 but we have added fewer extra nodes. The purpose of
this srmple example is to illustrate the benefits gained from
an element—by-element error ‘estimate. Using this estimate
we can choose a grid which gives a good improvement in
the solution (i. e., reducing the error) 4t a relatively small
cost-(i.e., only shghtly increasing the number of nodes).

The function in D”(SZ ) can be extended to functions in
D”(Q ) by defining them to be zero outside SZ thus
D”(,) is a subset of D“(SZ } and if S”€ D”(SZ )C
D”(Q ), then (S”, S”)H(Q y = (87, S”)H(Q 3 However no
simple relationship holds between functions in D'(£2,) and

D'(Q,) because functions in.D (€, ¢ are unrestncted along
the path BOB B, B, B,. This drfflculty can be overcome by
taking a subset Dy(S2,y of D ‘(&2,) in which functions are
zero along this path “Then, as above, extending these
functions to be zero outsrde @, D' (op) is a subset of
D'(R,) and if S’EDO(Q )CD'(L,,) then (S S)H(Q)
(s, S)H(Q ) Usmg trial funct1ons in DG(£2;) instead of
D'(22,) we obtain the results in columns (6) and (7) of
Table 1I. The difference between columns (5) and (7) on
each grid gives an estimate of the error introduced by
restricting the problem to be zero outside R,. For example,
on grid 1.4.1 some 70 percent of the error is produced by
the restriction suggesting that to get a better solution more
effort should be put into the infinite region rather than at
the singularity.

V. TREATMENT OF THE UNBOUNDED REGION

In the last section we saw that the error introduced by
assuining the solution was zero outside some curve which
was relatively large. This could be reduced by taking a
curve farther away from the origin, but we can do better
than arbitrarily choosing some curve. At the singularity, we
found an-optimum refinement, being able to. optimize &
which was dependent on 7. Similarly using the sets Di(,)
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TABLE III -
OPTIMUM VALUES OF k ,
ny Optimum ky
4 E 1.92
4 1.59
6 1.45
8 1.39
TABLEIV
Upper Lower | Error in Error in Error in Total
Grid n bound bound refinement | refinement | remaining éo 2
) on S on §? near sing. | for infin. | region rror
1.2.2 47 | 20.573 | 17.085 1.390 1.404 6.691 3.489
1.4.4 75 119.899 | 17.600 0.871 ﬁ.861 0.568 2.299
1.8.8 | 131 | 19.570 | 17.876 - 0.603 1 0.561 0.530 1.694
1o 32.|19.344 { 16.076 0.412 0.344 0.512 1.268
2.4.4 | 156 | 19.430 18 061 0.57Y 0.641 0.148 1.369
2.8.8 | 260 l9‘106 18 354 0.299 0.325 6.127 0.751
. 18.354 S .
20,0 77.118,882 | 18.567 0.099 0.097 0.120 0.316
4.0 1215 18.780 18.682 0.029 . 0.038 0.030 0.097

Note:~ the upper and Tower bounds. on $2 are equ1va]ent to upper
and lower bounds on the capacttance C (given by equation (2)).

and D"(Q ) we can optnmze the parameter k, whrch is
dependent on n, getting the results of Table III Usmg
these values we get the results of Table IV-for the problem
with a=5 and ¢, =¢,. On grid 1.2.2 with 47 nodes, ap-
proximately 40 percent of the error is coming from each of
the two refinements, suggesting that further refinements
would be beneficial. With the grid 1.8.8 the error is spread
telatively evenly through. the three portions of the grid;
further refinement at the singularity’ and for the un-
bounded region would reduce the contributions from these
two regions but would not greatly reduce-the error since
the -contribution from the blending triangulation would
become significant. Out of interest, the results for an
infinite triangulation (1.c0.00) (with k,=0.1, k,=0.1, R,
=2.5, R, =0.8), see [7] which is related to the idea drs—
cussed by [8], are given. Thus for-only 32 nodes we get
remarkably good answers. The results for grids 2.4.4 and
2.8.8 are given, although approximately equal contribu-
tions to the ertor arise from the two refinements, these still
make major contributions to the total error and would
suggest that further refmements would be beneficial. Fi-
nally, the results w1th 2.00.00 and 4.00.00 are also given.
Some results for the case when b =2, a =1, and ¢, = 10¢,
are given in Table V, in which for each grrd R, =35,
R, =0.8. The smgularrty is not so severe for this problem
this fact is apparent for the resulis on both grids 1.2.2 and
2.4.4 since both 47 and 59 percent of the respective errors
come from the infinite regions while only 15 percent of the
error for both grids comes from the singularity. Thus to
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TABLEV

Upper | Lower | Error in Error in Error in | ¢ t 1

Grid n bound | bound | refinement | refinement ; remaining egrg

on $2 | on §% | near sing. | for infin. | region r

1.2.2 | 47 |s5.74 | 52.02 | 0.501 1.740 laa |32

1.2.4 57 | 55.24 | 52.35 0.465 1.137 1.286 2.888

1l.w.® 32 {54.75 | 52.76 0.183 0.549 1.259 1.991

F2.4.4 156 | 54.31 | 53.04 0.193 0.754 0.323 1.270

2.4.8 | 192 | 54.10 | 53.22 0.176 0.403 0.296 0.876
2.0, 77 153.90 | 53.4] 0.044 0.146 0.293 0.483 ‘

4.05.«' 215 [ 53.71 | 53.57 0.013 0.052 0.074 0.139

For the problem with b = , a = 1, €1 = 10eg.

improve the solution on these two grids the best strategy is
to place more refinements for the unbounded region, i.e.,
grids 1.2.4. and 2.4.8.

VI. CoNcCLUSION

In this paper some ideas on error assessment in the finite
clement method have been iniroduceéd for field problems.
It has been shown how these ideas can be used to choose
an optimum grid refinement pattern at a s1ngu1ar1ty and
for an unbounded region. It has also been shown how the
effect of arbitrarily assuming a zero solution outside some

finite region can be -assessed. By looking at element by.

element contributions to the error, those elements or groups

Short Papers

of elements making major contributions to the error can be
identified and singled out for refinement.
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AnalySis of a Microwave FET Oscillator Using an
Efficient Computer Model for the Device

ASHER MADJAR, MEMBER, IEEE

Abstract —This paper presents a time domain analysns of a microwave
10-GHz FET oscillator, which employs a practical and efficient computer
model for the FET. Good agreement is demonstrated between the predicted
and measured performance. A sensﬁmty analysis of the\ circuit is ‘per-

Manuscript received October. 9, 1981; revised January 13, 1982.
The author is with the Isracl Ministry of Defense, P.O. Box 2250 (Code 83),
Haifa, Israel, | ’

formed with respect to some of the FET parameters. This is useful
information to estimate performance variation in production.

I. INTRODUCTION

In the last decade the GaAs MESFET has become an im-
portant and useful microwave device. Many microwave compo-
nents can be built using this device—amplifiers, oscillators,
switches, mixers, etc. To enable an accurate and efficient design
of components using MESFET’s it is useful to have a fast and
reasonably accurate large signal model for the device. The basic
model of Shockley [1] was shown' to be invalid for GaAs short
channel FET (modern microwave FET’s belong to this' category).
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