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Assessing the Error in a Finite Element
Solution

911

RONALDW.THATCHER

Abstract —In this paper a method of error assessment for the finite

element method is discussed. This idea is used to optimize grid refinement

schemes both for singularities and also for handling unbounded regions. It
is shown how those elements, or groups of elements, that make large

contributions to the error term can be identified so that locaf grid” refine-

ments can he placed in the most advantageous regions.

I. INTRODUCTION

T HE FINITE element method for solving field prob-

lems has become a widely used procedure (see, for

example [1], [2]). In this paper some ideas concerning error

assessment are presented with reference to a particular

problem in electrical field theory.

The problem is illustrated in Fig. 1 and is a parallel plate

capacitor in free space (permittivity eO) with a dielectric

medium of permittivity .s, between the plates which are of

width 2a and separation 2b. The electric field u of this

problem satisfies the differential equation

V. EVU=O, in Q (1)
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Fig. 1. A parallel plate capacitor.

where

i) Qis the region —co<x <co,

ii) e(x, y)= el in the dielectric,

= eOelsewhere

subject to the boundary conditions

i) u=+ Vonplatel

ii) u = – V on plate 2

iii) u+ Oasxory+ *m.

and

ii) auia~ = Oon af22 (4)
—co<y <co,

where W, and i3Q2 are parts of the boundary of Q.

The solution of this differential equation gives the

minimum to the functional

(5)

over all functions belonging to D“(Q) where ~“(fl ) is the
The calculation of u and of the capacitance C set of functions that

C=~~elvu12dQ (2) i) are continuous in Q and have square integrable first

derivatives in Q,
are important for this problem. ii)satisfy the boundary condition (3).

II. ERROR ASSESSMENT The dual or complementary approach to this problem is

The method of error assessment adopted here is related to find the minimum o of the functional

to the use of dual or complementary variational principles

and Synge’s hypercircle method, [3]–[5]. To illustrate the

method we consider the differential equation (1), for which
J’(@’)=~+lv@’l’dQ-2~Qf*d(aQ) (G)

!2is a finite two-dimensional region with boundary tlfl,

subject to the boundary conditions over all functions belonging to D’(Q) where D’(Q) is the

i) u= font)tl, (3)
set of functions that

i) are continuous in Q and have square integrable first
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The solution u of the differential equation is related too by

au_~~ a~=.l~

ax–cay lij eax”
(7)

To obtain our error estimate from these two solutions we

use the space H(Q) of two-dimensional vector-valued func-

tions in Q with inner product

(p,@ H=&P.Qdi2 (8)

which is properly defined when

O<e ~ln<&(x, y)<&ma <co. (9)

The gradient of u is denoted by S in H(Q), the gradient of

the typical O“ of D“(Q) is denoted by S“ in H(O), and S

in H(Q) denotes

s,=: [1a+fiay

& aqS/ax
(lo)

for the typical ~’ of D’(Q), then for all S’ and S“ we have

i) (S– S’, S– S’)~ < (S’– S“,S’-S”)~ e E (11)

ii) (S— S“,S- S’)~ < E (12)
iii) (S’, S’)~ – E < (S, S)~ < (S’, S’)~. (13)

Thus E is an upper bound of the error in H(Q) between

both S and S’, and S and S’.

As defined, this estimate E of the error is seldom of great

value although if E is zero then both S’ and S“ must

represent the solution S and if E is very small compared

with (S’, S’)~ and (S”, S“)~ then both S’ and S“ must be

good approximations. However, E is an integral over the

region 0 and, when approximate minima of the functional

(5) and (6) are calculated by the finite element method on

the same grid of elements, the element-by-element contri-

butions to E can be calculated and hence element-by-ele-

ment assessment of accuracy. In this way, those elements

making major contributions to the error can be identified

and singled out for grid refinement.

These ideas can be extended to problems in which Q is

unbounded. If we take the boundary condition at infinity

to be

u+ Oas(x, y)+cc (14)

then we have to add the extra condition to D“ that

@“+Oas(x,y)-cc (15)

and an extra condition to D; namely

~’ - (constant) as (x, y) + co. (16)

These ideas can be further extended to problems with

rotational symmetry and general three-dimensional prob-

lems. More generally, the dual principles are nonlinear and

the bounds (11) and (12) are not valid. Nevertheless, the

calculation of element-by-element contributions to E, as

defined by (11) could be used to find those elements in

which the representation is likely to be poor.
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Fig. 2. Grid I with refinement at the singularity and 2 “at infinity,” (a)

The blending section. (b) Refinement for the infinite region. (c) Refine-

ment for the singularity.
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Fig. 3 Grid 2 with 3 refinements at the singularity and 2 “at infinity.”
(a) The blending section. (b) Refinement for the infinite region. (c)
Refinement for the singularity.

111. FINITE ELEMENT GRIDS FOR THE PARALLEL

PLATE CAPACITOR

A brief description of a parallel plate capacitor is given

in Section I and by exploiting symmetry it can be reduced

to solving the problem in the positive quadrant with the

extra boundary conditions

i) u = O on the X-axis (17)

ii) au/an = O on the Y-axis. (18)

The automatically generated grid of triangles used to solve

this problem are made up in three sections

i) a systematic refinement scheme near the singularity

ii) a systematic refinement scheme to cope with the

infinite region

iii) a blending triangulation in between.

The various sections of the typical grids are illustrated in

Figs. 2 and 3, where the nodes {A,}$=o are a distance Ra

from (O,O) and the nodes {Bl}~=O are a distance Rb from

(O, O) with

Rb=ROXk ~a (19)

where

i) ka is some parameter greater than 1

ii) n ~ is the number of refinements for the infinite region

and these nodes form the basis for the systematic refine-

ment scheme for the infinite region. Similarly, the nodes

(S, ) are a distance R. from the singularity at S and nodes
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TABLE I
OPTIMUM VALUE OF k,

—

2

4

6

8

Best kS

for gl = Co

0.36

0.48

0.56

0.61

‘est=kioeofor S1

0.42

0.54

0.61

0.66

are placed concentrically at distances

R, Xk:, p=l,2,. ... n3

where

i) k, is some parameter between O and 1,

ii) n, is the number of refinements at S,

(20)

and these nodes form the basis for the systematic refine-

ment scheme for the singularity.

It has been shown [6] that given the form of the singular-,

ity at S, (which will depend on the dielectric medium

between the plates) and the value of n,, the value of k, that

minimizes the error is independent of a and b, of the

number of nodes on the arcs of radii R, kj’ and of R.,

These values are given in Table I.

IV. A SOLUTION OBTAINED BY IGNORING THE

UNBOUNDED REGION

Approximate solutions are obtained by minimizing the

functional (5) and (6), respectively, in the sets D’($lm ) and

lY’(Q~ ) where fl~ is the region x >0, y > O; the integrals

in (5) and (6) are evaluated over fl~. In practice the

simplest way to tackle this problem is to assume that

the solution is zero outside some large radius, which is the

approach adopted below. At the end of this section we will

use the ideas discussed above to get an assessment of the

error this assumption produces. Here we will consider only

the case when a = b =1, V= 1, and El = eo, i.e.? no dielec-
tric medium between the plates. The solution will be as-

sumed to be zero outside the polygon BOB,B211~ B4, for

which Rb is taken to be 3. (Note, this is not a good choice

if a useful solution is required by this approach.) We will

denote by !ilP the subregion of Qw inside this polygon.

Approximate solutions are obtained by minimizing the

functional (5) and (6) with respect to generalized coordi-

nates of trial functions in the sets ll’’(flP ) and D’(QF)

using linear triangular elements on the grids shown in Fig.

4. Each grid has a title of the form

2.3(0.51).4(1.26)

which represents grid 2 with n.= 3, k,= 0.51, n. =4,

k== 1.26, and for all the grids used here R,= 0.8, R.= 2.5.

The shaded elements in Fig. 4 are those elements that are

making more than twice the average contribution to the

error E.

913
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Fig. 4. Typical grids for the restricted problem. (a) Grid 1.2(0.36), I ( 1.2).
(b) Grid 1.4(0 48),1(1.2). (c) Grid 1.8(0.61).1(1.2). (d) Grid
2.2(0.36).1(1.2).

T
No, of

Grid gen.
WOrds

1.2.1 42

1.4.1 60

1.8.1 96

2.2.1 95

Spec. 68

TABLE II

Upper Lower Error for Exact lower
boutid bound restricted bound for
on S2 on S2 problem full problem

23.49 20.76 2.729 15.49

23.16 21 ,Ob 2,096 15.66

22.97 21.24 1.741 15.75

22.99 21.30 1.685 15.78

22.96 21.39 1.573 15.83

.,,. are calculdced using (13)

Colurm ,Jl Is calculated usin~ (11).

rrue error
For full
>roblem

8.oO5

7.506

7.226

7.206

7.127

For the grid 1,2.1, several large elements are

significant contributions to the error but the ratio

(element error)/(area of element) ~(element erro~

making

density)

(21)

for these elements is not grossly out of line with the ratio

(total error)/(total area)= (total error density). (22)

However, for the three elements at the singularity the

difference in these two ratios is a factor of approximately

50 which indicates that further refiriement at the singu-

larity would be beneficial. Thus grid 1,4,1 is used. By

looking at column (5), Table II, we can see that the total

error has been reduced by about 22 percent and the

number of nodes increased by 18.

To improve the solution on grid 1.4.1 without any

information about the error we might put in more refine-

ments at the singularity, i.e., use grid 1.8.1, or for a more
refined grid to reduce the size of the large elements, i.e., use

grid 2.2.1. On both of these grids, the nutnber of nodes has

been increased by about 60 percent and the error reduced
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Fig. 5. A suecial grid. Note: a circle around a node indicates that it is an
extra n-ode ad-ded to the grid 1.4.1, that is an extra eight nodes.

by about 15 percent. But by looking at the elements giting

a major contribution to error, that is the shaded elements

in Fig. 4(b), we can choose a grid that increases the number

of nodes by only 13 percent but decreases the error by 25

percent. The special grid used. is illustrated in Fig. 5 arid

with this grid we get a smaller error than grids 2.2.1 and

1.8.1 but we have added fewer extra nodes. The purpose of

this simple example is to illustrate the benefits gained from

an element-by-element error estimate. Using this estimate

we can choose a grid which gives a good improvement in

the solutiori (i.e., reducing the error) at a relatively small

cost (i.e., only slightly increasing the number of nodes).

The function in lY’(~P ) can be extended to functions in

lY’(Qm ) by defining them to be zero outside flP, thus
D“(QP) is a subset of D“(fl~) and if S“E, D“(flP) C

D“(Q~ ), then (S”, S“)~(Qp~= (S”, S’)~(~& j. However, no

simple relationship holds between functions in D’(QP ) and

D’($lm ) because functions in D’(flP) are unrestricted along

the path BOIll B2 B3B4. This difficulty can be overcome by

taking a subset D((i2P ) of D ‘(fl~ ) in which functions are

zero along this path. Then, as above, extending these

functions to be zero outside QP, lYO(i2P) is a subset of

D’(Qm) and if S’~ D’O(!dP)CD’(Q~) then (S’, S’)~(~P) =

(S’, S’)~(~ ~. Using trial functions in D~(!2P ) instead of
ti’(QP) w: obtain the results in columns (6) and (7) of

Table II. The difference between columns (5) and (7) on

each grid gives an estimate of the error introduced by

restricting the problem to be zero outside R ~. For example,

on grid 1.4.1 some 70 percent of the error is produced by

the restriction suggesting that to get a better solution more

effort should be put into the infinite region rather than at

the singularity.

V. TREATMENT OF THE UNBOUNDED REGION

In the last section we saw that the error introduced by

assuming the solution was zero outside some curve which

was relatively large. This could be reduced by taking a

curve farther away from the origin; but we can do better

than arbitrarily choosing some curve. At the singularity, we

found an optimum refinement, being able to optimize k,

which was dependent on n.. Similarly using the sets D~(!JP)

TABLE III
OPTIMUM VALUES OF k,,

Grid

1.2.2

1.4.4

1.8.8

1 .-.-

2.4.4

2.8.8

2----

4.-.’=

:

upper
n bound

on L2

47 20.573

75 19.899

131 19.570

32 19.344

156 19.430

260 19.106

77 18.882

215 18.780

m‘a Optimum ka

2’ 1.92

4 1.59

6 1.45

8 1.39

TABLE IV

——
Lower
bound
on 52

17.085

17.600

17,876

16.076

18.061

18.354
18.354

18.567

18.682

:rror in

.efi newnt
iear sing.

1.390

0.871

0.603

0.412

0.579

0.299

0.099

0.029

m

$
1.404 0.691

0.861 0.568

0.561 0.530

0.344 0.512

0.641 0.148

0.325 0.127

0.097 0.120

0.038 0.031)
_

~

Total
Error

3.489

2.299

1.694

1.268

+

1.369

0.751

0.316

0.097

Note:- the upper and lower bounds Ori 22 are equivalent to upper
and lower bounds on the capacitance C (given by equation (2)).

and D“( !JP) we can optimize the parameter ka which is

dependent on .na getting the results of Table III. Using

these values we get the results of Table IV for the problem

with a = b and e, = Eo. .On grid 1.2.2 with 47 nodes, ap-

proximately 40 percent of the error is coming from each of

the two refinements, suggesting that further refinements

would be beneficial. With the grid 1.8.8 the error is spread

relatively evenly through the three portions of the grid;

further ‘refinement at the singularity imd for the un-

bounded region would reduce the contributions from these

two regions but would not greatly reduce the error since

the contribution from the blending triangulation would

become significant. Out of interest, the results for an

infinite triangulation (1. cc. to) (with k. = 0.1, k, = 0.1, l?.

= 2.5, R,= 0.8), see [7] which is related to the idea dis-

cussed by [8], are given. Thus for only 32 nodes we get

remarkably good answers. Tlie results for grids 2.4.4 and

2.8.8 are _given, although approximately equal contribu-

tions to the error arise from the two refinements, these still

make major contributions to the total error and would

suggest that further. refinements would be beneficial. Fi--.
nally, the results with 2. co. co and 4. m. m are also given.

Some results for the case when b =2, a =1, and&l = 1080

are given in Table V, in which for each grid R. = 3.5,
R,= 0.8. The singularity is not so severe for this problem,

this fact is apparent for the results on both grids 1.2.2 and

2.4.4 since both 47 and 59 percent of the respective errors

come from the infinite regions while only 15 percent of the

error for both grids comes from the singularity. Thus to
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TABLE V of elements making major contributions to the error can be
._. —

Upper Lower
identified and singled out for refinement.

Error in Error in Error in
Grid n bound bound refinement

Total
refinement Rmaining

on S2 on S2 near sing. for infin. region
error REFERENCES— —

1.2.2 47 55.74
[1] G, Strang and G. Fix. An Analysis of the Finite Element Method.

52.02 0.541 1.740 1.441 3.722 Englewood Cliffs, NJ: Prentice Hafl 1973.

.1.2.4 57 55.24 52.35 0.465 1.137 1.286 2.888 [2] O. C., Zienkiewicz. The Finite Element Method. New York: Mc-
Graw Hill 1977.

1.-. -’ 32 54.75 52.76 0.183 0.549 1.259 1.991
[3] .T. L. Synge. The Hypercircle Method in Mathematical Physics.

London, England: Cmbridge Univ. Press, 1957.

2.4.4 156 54.31
[4] A, M. Arthurs, “On variational principles and the hWercircle for

53.04 0.193 0.754 0.323 1.270 boundary value problems,” Proc. Roy. Irish A cad., pp. 75-83, 1977.

2.4.8 192 54.10 53.22 0.176 0.403 0.296 0.876 [5] P. Hammond and J. Penman, “Calculation of inductance and

capacitance by means of duaf energy principles,” Proc. Inst. Elec.

2---- 77 53.90 53.41 0.044 0.146 0.293 0.483 Eng., vol. 123, no. 6, pp. 554-559, June 1976.
[6] R, W. Thatcher, ‘<An optimum grid refinement at a singularity,”

4 ,-, ?, 215 53.71 53.57 0.013 0.052 0.074 0.139 internaf Rep. NA 55, 1980.

[7] “On the finite element method for unbounded regions,”

For the problem with b = , a = 1, El = 10cO. S~M’J. Nurn. Anal., vol. 15, pp. 466-477, 1978.
[8] P. P. Silvester et al., “Exterior finite elements for 2-dimensional

field problems with open boundaries,” Proc. Inst. Eiec. Eng., vol.

improve the solution on these two grids the best strategy is 124,no. 12,pp. 1267-1270, Dec. 1977.

to place more refinements for the unbounded region, i.e.,

grids 1.2.4. and 2.4.8.

VI. CONCLUSION

In this paper some ideas on error assessment in the finite

element method have been introduced for field problems.

It has been shown how these ideas can be used to choose

an optimum grid refinement pattern at a singularity and

for an unbounded region. It has also been shown how the

effect of arbitrarily assuming a zero solution outside some

finite region can be assessed. By looking at element by.

element contributions to the error, those elements or groups
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Analysis of a Microwave FET Oscillator Using an

Efficient Computer Model for the Device

ASHER MADJAR, M3MBER, IEEE

Abstract —This paper presents a time domain analysis of a microwave

10-GHz FET oscillator, which employs a practical and efficient computer

model for the FET, Good agreement is demonstrated between the predicted

and measured performance. A sensitivity analysis of the circuit is per-
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formed with respect to some of the FET parameters. This

information to estimate performance variation in production.
,/

I. INTRODUCTION

,
is useful

In the last decade the GaAs MESFET has become an im-
portant and useful microwave device. Many microwave compo-
nents can be built using this device— arnplifiers~ oscillators,

switches, mixers, etc. To enable an accurate and efficient design

of components using MESFET”S it is useful to have a fast and

reasonably accurate ltige signaf model for the detice. The basic

model of Shockley [1] was shown to be invalid for GaAs short

channel FET (modern microwave FET’s belong to @is’ category).
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